伽马射线暴

Gamma Ray Burst

伽马射线暴是来自天空中某一方向的伽马射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.1-1000秒,辐射主要集中在0.1-100MeV的能段。

伽马暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽马暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。

伽马射线暴是目前已知宇宙中最强的爆射现象,理论上是巨大恒星在燃料耗尽时塌缩爆炸或者两颗邻近的致密星体(黑洞或中子星)合并而产生的。伽马射线暴短至千分之一秒,长则数小时,会在短时间内释放出巨大能量。如果与太阳相比,它在几分钟内释放的能量相当于万亿年太阳光的总和,其发射的单个光子能量通常是典型太阳光的几十万倍。

伽马射线暴的产生原因

恒星的诞生和老恒星的死亡是联系在一起的。超大质量恒星迅速老化、爆炸,散发出的星际尘埃快速充斥于星云之中,超大质量爆炸产生的新物质也被喷发进星云之中,星云密度变得很大,孕育新的恒星诞生。在充斥着星际尘埃的星系,大量的恒星生死轮回正在发生着。由于恒星形成于星际尘埃区域,可推测包裹黑暗伽马射线暴的尘埃团可能是孕育恒星的诞生之地。

关于伽马射线暴的成因,有人猜测它是两个致密天体如中子星或黑洞的合并产生的,也有观点认为它是在大质量恒星演化为黑洞的过程中产生的。

1998年发现伽马暴GRB 980425与一个超新星SN Ib/Ic 1998bw相关联。这是一个重要的发现,暗示伽马暴的成因可能是大质量恒星的死亡。2002年,一个英国的研究小组研究了由XMM-牛顿卫星对2001年12月的一次伽马暴的长达270秒的X射线余辉的观测资料,发现了伽马暴与超新星有关的证据,发表在2002年的《自然》杂志上。进一步的研究揭示,普通的超新星爆发有可能在几周到几个月之内导致伽马射线暴。大质量恒星的死亡会产生伽马暴这一观点已经得到普遍认同。

伽马射线暴的主要特征

伽马射线暴的持续时间一般在0.1秒到1000秒左右,以2秒为界,大致可以分为长暴和短暴两类,典型的持续时间分别为30秒和0.3秒。时变的轮廓比较复杂,往往具有多峰的结构。伽马射线暴在天空中的分布是各向同性的,但远距离的伽马射线暴明显少于近距离的,显示出非均匀各向同性,可以被膨胀宇宙学模型所支持,表明伽马射线暴是发生在宇宙学距离上的。

伽马射线暴爆发过后会在其它波段观测到辐射,称为伽马射线暴的余辉。根据波段不同可分为X射线余辉、光学余辉、射电余辉等。余辉通常是随时间而指数式衰减的,X射线余辉能够持续几个星期,光学余辉和射电余辉能够持续几个月到一年。

伽马射线暴的现象分类

伽马暴有两类,短暴(小于2秒)与长暴(大于2秒)。

长暴被普遍认为是“超新星的类似物”,标志着50至100倍于太阳的恒星的毁灭性爆发。当这样一颗庞大的恒星爆炸时,它会留下一个黑洞,并将这一信息以伽马射线的形式扫过宇宙。内在的物理机制首先由加州大学的物理学家Stan Woosley博士提出并发展成形,而他的“坍缩星”模型被认为是解释长暴的主流理论。

短暴更为让人迷惑。它们的起落时间非常短,不会是超新星,而爆发的能量并不足以构成恒星的爆发。许多研究者认为,它们是由超致密的中子星(可能也是中子星与黑洞)碰撞产生的。两种情况都会产生另一个黑洞。

伽马射线暴的能源机制至今依然远未解决,这也是伽马射线暴研究的核心问题。随着技术的进步,人类对宇宙的认识也将更加深入,很多现在看来还是个谜的问题也许未来就会被解决,探索宇宙的奥秘不但是人类追求科学进步的必要,这些谜团的解开也终将会使人类自身受益。

伽马射线暴的产生影响

物理学家通过计算发现强大的伽马射线暴能够杀死一定范围的宇宙生命,更致命的是伽马射线暴还有定期发生的规律,这对宇宙生命而言是个不利的消息,因为这一情况可以阻止宇宙生命进化成高级物种。最新的评估认为,伽马射线暴可能清除了大约90%的星系空间,银河系内也受到伽马射线暴的冲击,地球生命在未来可能也将面临类似的命运。伽马射线暴来自恒星进入生命末年时的爆发,强大的辐射可破坏DNA,并导致行星失去大气层。

科学家还发现,伽马射线暴在过去5亿年左右袭击过地球,导致大量的生命灭绝,这个解释或许能够说明为什么我们至今仍然没有找到其他宇宙生命,科学家根据巡天观测的结果也发现伽马射线暴可能让许多星系毫无生机。地球在过去的岁月中也受到伽马射线暴的“洗礼”,但地球生命却顽强生存下来,这一情况也会宇宙中其他天体上出现,这意味着其他天体上的生命可能具有更顽强的生命力。

在过去的5亿年左右,银河系内的伽马射线暴事件让银河系大部分地区都无法生存,来自耶路撒冷希伯来大学的物理学家Tsvi Piran称我们发现致命的伽马射线暴在银河系内出现得非常频繁,地球周围也可能出现伽马射线暴,但是银河系中央附近的伽马射线暴要更强大一些,位于银河系边缘地带出现伽马射线暴的概率会低于50%。从距离上看,距离银河系中央大约3.2万光年之外宇宙生命生存下来的概率会更大一些。

从星系的分布特点可以看出,生命适合在大型星系的边缘生存,这里的空间环境是最安全的,因此偌大的星系其实只有边缘附近适合生存,此类空间占星系的10%左右。根据空间望远镜的观测结果,宇宙中伽马射线暴几乎每天都在发生,而且方向是随机的,如果某个拥有生命的行星不幸处于伽马射线暴的释放路径上,那么这颗天体上的生命将遭遇灭顶之灾,科学家认为这样的事件发生概率为一千万分之一。

伽马射线暴的研究历史

伽马射线暴是1967年美国Vela卫星在核爆炸监测过程中由克莱贝萨德尔(Klebesadel)等人无意中发现的。

20世纪60年代,美国发射了船帆座卫星,上面安装有监测伽马射线的仪器,用于监视苏联和中国进行核试验时产生的大量伽马射线。

1967年这颗卫星发现了来自宇宙空间的伽马射线突然增强,随即又快速减弱的现象,这种现象是随机发生的,大约每天发生一到两次,强度可以超过全天伽马射线的总和,并且来源不是在地球上,而是宇宙空间。由于保密的原因,关于伽马射线暴的首批观测资料直到1973年才发表[4],并很快得到了苏联Konus卫星的证实。

冷战时期,美国发射了一系列的军事卫星来监测全球的核爆炸试验,在这些卫星上安装有伽马射线探测器,用于监视核爆炸所产生的大量的高能射线。侦察卫星在1967年发现了来自浩瀚宇宙空间的伽马射线在短时间内突然增强的现象,人们称之为“伽马射线暴”。由于军事保密等因素,这个发现直到1973年才公布出来。这是一种让天文学家感到困惑的现象:一些伽马射线源会突然出现几秒钟,然后消失。这种爆发释放能量的功率非常高。一次伽马射线暴的“亮度”相当于全天所有伽马射线源“亮度”的总和。随后,不断有高能天文卫星对伽马射线暴进行监视,差不多每天都能观测到一两次的伽马射线暴。

由于伽马暴的持续时间非常短暂,而且方向不好确定,起初对伽马暴的研究进展十分缓慢,连距离这样的基本物理量都难以测定,1980年,基于Ginga卫星的观测结果,许多人相信伽马射线暴是发生银河系中的一种现象,成因与中子星有关,并围绕中子星建立起数百个模型。20世纪80年代中期,美籍波兰裔天文学家玻丹·帕琴斯基提出,伽马射线暴发生在银河系外,是位于宇宙学距离上的遥远天体,然而这种观点并没有得到普遍认可。

1991年美国发射了康普顿伽马射线天文台(CGRO),这颗卫星的八个角上安装了八台同样的仪器BASTE,能够定出伽马射线暴的方向,精度大约为几度,几年时间里,对3000余个伽马暴的系统巡天发现,伽马射线暴在天空中的分布是各向同性的,支持了伽马射线暴是发生在遥远的宇宙学尺度上的观点,并且引发了帕钦斯基与另一位持相反观点的科学家拉姆的大辩论。

如果伽马射线暴确实位于宇宙学尺度上,那么由它的亮度可以推断,伽马暴必定具有非常巨大的能量,往往在几秒时间里释放出的能量就相当于几百个太阳一生中所释放出的能量总和,是人们已知的宇宙中最猛烈的爆发,例如1997年12月14日发生的一次伽马暴,距地球120亿光年,在爆发后一两秒内,其亮度就与除它以外的整个宇宙一样明亮,它在50秒内释放出的能量相当于银河系200年的总辐射能量,比超新星爆发还要大几百倍。在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。而1999年1月23日发生的一次伽马暴比这还要猛烈十倍。

1996年,意大利和荷兰合作发射了BeppoSAX卫星,这颗卫星能够准确地测定伽马射线暴的方位,定位精度约为50角秒,这就为地面上的望远镜在伽马暴未消逝之前寻找其光学对应体提供了强有力的支持。在它的帮助下,天文学家们率先发现了1997年2月28日爆发的一个伽马暴的光学对应体,称为伽马暴的“光学余辉”,后来又陆陆续续地发现了数个类似的余辉,不仅有可见光波段的,也有射电波段,X射线波段,并且还证认出了伽马暴的宿主星系,对宿主星系红移的观测证实,伽马暴远在银河系以外,是宇宙学距离上的天体,余辉的发现使人们能够在伽马暴发生后数月甚至数年的时间里对其进行持续观测,大大推动了伽马暴的研究。

至2015年人们已经观测到了2000多个伽马暴。

有关伽马射线暴的其他内容